
File Synchronization — Notes (from Old Files1)

May 6, 2016

I • Background
A. Wrong to think of the problem in “horizontal” terms: replication, synchronization, duplication, coordination, etc.
B. Should instead be thought of “vertically”: as layered identities, each layer fanning-out to layers below.

1. Claim: though unfamiliar (to programmers), it is ultimately easier to think of a single entity at various layers
of abstraction, instead of multiple (more or less synchronized) copies.

II • Examples
A. Shortcut (e.g., in a mail folder hierarchy

B. Moving a file

1. Files fα and fβ previously synchronized (on machines α and β). fα moved different folder; fβ’s contents edited.
When next synchronised, typically end up with two files on both α and β; one properly renamed but with
out-of-date contents; the other with up-to-date contents but in old place with old name.

C. Flagging files
1. Want to identify critical files to be backed up every hour. You create a special folder of aliases (hard or soft

links) of each file you want backed up. Backup program merely makes copies of the aliases, not copies of the
files pointed to. Copying the files into the special folder won’t work, obviously. So solutions require special
techniques (such as “tagging” or something, which use a different mechanism.

D. Cache coherence strategies: for multiple processors sharing memory, “write through,” etc.

III • Principles
A. Initial

1. Abstraction: Don’t think about different versions of documents. Instead, deal with documents as single, co-
herent unities.

2. Disconnection: Perfect realtime coordination between multiple instances of file (folder, project, data base,
etc.) is unattainable. There will always be periods of disconnection between two or more concrete instances
of a single unitary abstraction.

3. Failure. Rather than (in the first instance) providing a complex, plural story that is true, provide a simple, sin-
gular story that remains an unachievable ideal. Then: admit the ideal is unattainable, and explain the failure in
its terms.

4. Adaptiveness: Adopt (level of) identity that makes sense for the given operation, in the local situation.
5. Accountability: Systems should fail intelligibly; detect and report failures in terms of the ideal2

1from “Up and Down” and “Layers of Identity” (in some files called “(· Synchronization”, for some reason).
2Tellingly, a tacit understanding of this is evident in error messages. E.g.: “Conflict: you have edited this file on both

folder

sub-folder

sub-folder
sub-folder

…
…

sub-folder
sub-folder

…
mail-box1
mail-box2
mail-box3…

short-cut

Original — on Office Mac PowerBook — After Syncrhonizing

folder

sub-folder

sub-folder
sub-folder

…
…

sub-folder
sub-folder

…
mail-box1
mail-box2
mail-box3…

short-cut

Brian Cantwell Smith … «date»

 Page 2 / 5

B. In sum
1. Think in terms of the (single) abstract entity whenever possible;
2. Think in terms of the (plural) concrete entities when necessary—including, paradigmatically, those times

when it is necessary to understand how the former, singular, goal cannot be met.

IV • Solution

Diagram is screwed up—suggests that Δl and Δk are somehow inverses!

There is a question about whether one lifts or drops Δs, or only resultant states. (Equivalent in some sense.)

In Folia: α is not abstract; rather, closest thing to α is what is on the server, which is authoritative. Do pass
around Δs. Lifts are therefore identity. At the server, no idea of how to interpret or apply Δs; just good for
passing them around (Folia never got to sending whole states; note in video streaming that …). With author-
ity, on conflict,

Google docs have “OT”—operational transformation. All completely identical models (all Δs could apply to ar-
bitrary instances; only issue is temporal sequencing). No lifting or dropping… Standard way to handle it in
CS is to lock (with refresh time-out). Call these the : just replication (distributed, temporal Δs, but ac-
countable only to strict identity).

So: question (for what follows): (i) what is not easy, (ii) how common (or useful) are non-easy cases; and (iii)
is the lift/drop model useful for them?

We already know that the Δ may not happen as such (perhaps it is better to lift, make the Δ at the α level,
and then drop. But it is possible that even the Δl and Δk should perhaps not be done at the β level either; ra-
ther, a lifted Δ should be “asked” of the abstract level (i.e., in terms of the more abstract model), and then
reconcretized. This might enable constraint satisfaction (e.g., no cycles in file directories) to be checked at the
level at which they are most simply conceived).

A. Explanation
1. Setup

a. t: moment in the past when the various concrete entities βi were last “synchronized”
b. During the interval Δt from t until t', the concrete βi were (physically) separate
c. During that time a certain set of operations Δi were performed on each the various βi (indicated in the

diagram as Δ1 and Δk), transforming them into the corresponding set of βi'.
B. Problem

1. Determine what new set of operations Δi need to be performed on the various βi at time t' (“synchroniza-
tion” time) in order to bring them all into synch.

sides”—intelligible only if one takes “this file” as referring to the abstract file (better than the only true horizontal thing
that could be said: “these two files have both been edited since the last time they were synchronized”).

time

…

1 2
3

k

…

1
2

3
k

t
t

1

k

•
•t 1

k

• •
•

•

•

• •
•

•

•

' '
'

'

'

'

Brian Cantwell Smith … «date»

 Page 3 / 5

2. I.e., given:

a. States βi at time t, and
b. Operations (transactions) Δi

3. Figure out “clean-up” operations ΔI (two such clean-up operations are shown in the figure: Δ1 and Δk).
C. Solution: figure out what net abstract operation ∇ has happened to abstract entity α.

1. Not: sum or union of all the concrete transactions ΔI (i.e., something like Σ(Δi)).
a. Each ΔI, defined over a specific concrete entity βI, may be concerned with issues specific to that concrete

instance—issues that may or may not be shared by other concrete instances, and may not be defined at
all at the abstract level. (E.g., whether to use American or British spelling; whether to print out on the
printer at the office or the printer at home; which concrete instance to create a link to, etc.).

2. Instead: “lift” (‘↑’) operations from concrete to abstract level. Net transaction is:
a. ∇ = Σ(↑Δi)

3. Then: each net operation that should have happened to a concrete entity βk would be approximately the
“concretization” (call it “drop”; indicate as ‘↓∇’). But since dropping may be specific to particular concrete in-
stance, concretization must indexed, as ‘↓i’. So net operation that should have happened to βk would be
↓k∇.

D. Synchronization equation

Δk = ↓kΣ(↑Δi) – Δk

Note: the ‘–‘ may not be the most perspicuous way of handling “what may meantime have happened on k”

1. ‘Δk’ ≡ concrete operations
2. ‘↑’ ≡ abstract(ify)
3. ‘↓k’ ≡ concretize
4. ‘Σ’ ≡ abstract operation sum (perhaps this should be ‘integrate’ or ‘union)
5. ‘–’ ≡ concrete operation difference

V • Notes
A. General

1. Abstract entities don’t “exist,” computationally (aren’t concrete). Point: design the software in their terms.
B. Aspects

1. Divide operations Δi into conceptually separable—ideally (nearly) orthogonal?—different aspects. E.g.:
i. Create
ii. Modify zero or more of

α. Name ⇐ i.e., Rename
β. Location ⇐ i.e., Move
χ. Contents ⇐ i.e., Edit

iii. Delete

On easy model, client would know that they are orthogonal (i.e., .α.β ≡ .β.α). In Folia, the authority doesn't
know anything about it. Google docs: authority does everything (client doesn’t): basically a full-duplex of the
content. So: if no “conflicts” (two renames, e.g.), pretty straightforward either way.

C. Mereology
1. Operations would need to be defined, recursively, over the mereological (part-whole) hierarchy

a. Folia and Google docs drive down to lowest-level particular objects (e.g., non-overlapping regions,
where “non-overlapping” could be wrt a model (e.g., sequence of ¶s, each ¶ a sequence of sentences,
etc. Folia: character # wrt sections, ¶s, “unit.”)

2. Probably require protocols or APIs (mail folder recursively apply scheme to the individual mailboxes; mail-

Brian Cantwell Smith … «date»

 Page 4 / 5

boxes to messages; word-processor to individual documents (so as to generate the ‘union’ of a set of edits,
for example).

3. In each step down this part-whole hierarchy, the specific set of applicable concrete operations (the ‘Δk’)
would likely change. (Cf. the old “OpenDoc’ and “OLE” frameworks.)

No deep challenges yet, to the easy model, because there are no differences among the instances.

D. Differences
1. Support differences among different concrete instances. E.g.:

a. Partial replication: On one machine, store only headers of messages more than a month old. But other-
wise treat those (emasculated) messages in ordinary ways (file, forward, copy, delete; include pointers to
them in documents; embed them in outgoing messages, etc.).

Is this done in imap? Don’t get the bodies at once. Or even if you fetch bodies, don’t fetch images; even if fetch
images, don’t “download” attachments. Can still do things like forward and reply…

b. …This could be achieved by defining the concretize or “drop” operation ‘↓laptop’ to throw-away mes-
sage bodies. That’s all; everything else would fall out!

OK, so far the concrete instance is just “less than” the “full” version. So drop discards some things. No changes
to “lift”, except that one notes that certain lift operations won’t be coming from this instance.

c. Variant spellings and formatting:
i. E.g.: business plan in New York and London offices. Define α to be a document consisting of an ab-

stract string of atomic words, and have corresponding ‘↓NewYork’ and ‘↓London’ operations instan-
tiate those words with British and American spelling, respectively. Document could be edited at ei-
ther end. E.g., in New York, changing the heading of a section to:
α. “Analyze the Role of Aluminum in Causing Alzheimer’s Disease”
would automatically cause the British version to turn into
β. “Analyse the role of aluminium in causing Alzheimer’s disease.”

ii. E.g., file names in Mac/Windows/Unix: (‘/’, ‘\’, etc.; ‘ ’ vs. ‘_’; “%20” vs. ‘) URL encodings. cr vs. cr-lf.
iii. Numbering file names…
iv. Capitalization?
v. Ligatures?

Note that to implement anything remotely relevant to the “lifted” abstract level, you have to represent or de-
scribe the abstract level (e.g., the abstract Δ) concretely. E.g., file directory and member model, need to
have a concrete representation of something being an abstract directory plus members…

In many of the cases so far, it is probably simpler to use one concrete case as the simplest “description of
the abstract case”; call this the “canonical case.” Then one can represent concretizations (drops) as Δs from
the canonical model. (Note that being ‘canonical’ is not yet being ‘authoritative.’). However maybe the ca-
nonical is not necessarily the easiest for constraints.).

d. Spelling correction: one could use a single-instance version of such a scheme as a model of spelling-
correction: ‘↑’ to lift attempted spellings into abstract words; the only ‘↓’, to spell them correctly!

e. Translation: Obviously, ‘↑’ to “lift” into mentalese (Hinton’s current 100,000 node graph); various ‘↓’s to
drop into different natural languages (probably with human help)

Are constraints easier to state at the upper level. E.g., in file systems: can’t be cyclical. So: determination of
whether there is a loop could be easier to determine at the abstract level.

Brian Cantwell Smith … «date»

 Page 5 / 5

Another example: “lifting” a “description” (wrt a model) of any named hierarchy (e.g., my file system) and
import (drop) it into a different instance, like my Mail folder hierarchy.

f. Versioning: Would the scheme apply to versions? Do papers and software need to be treated differently?
E. Context dependence

1. What about synchronizing files (applications) in the system folders of different computers? No one even tries
it; yet surely it is a crying need. (Cf. “install” and “uninstall” programs.)

2. “Local printer”—is that an “abstract” printer? At least this kind of localization should be treatable in this
model?

VI • Work to do
A. File system: identify various operations (create, edit, delete, rename, move, etc.)
B. A general API? —for the general model. But then what would “specialize” it to particular cases?
C. Meta-data: should each “concrete” file or object, in a system, represent, in meta-data of some sort, what opera-

tions it knows how to lift and drop, how it should be treated, modified, moved or whatever?
1. E.g., should aliases/links “say”, within them (in meta-data) how they should be treated in different circum-

stances—e.g., when copied onto a different physical volume?
a. For example, the aliases mentioned in the early example (of hourly backup) could say, in their metadata,

that they should not be backed up, but rather that the files they pointed to should be backed up; whereas
other aliases might say that they should be backed up, but on the backup (or synchronized) volume the
corresponding alias should point to the file on the backup.

2. Similarly, files could “say” whether, if “moved” (dragged) onto a new disk volume, whether the copy on the
old volume should be deleted.

VII • Summary
A. Think “vertically” about abstract entities, concrete entities, and the relationships between and among them (such

as abstraction and concretization).
B. Let system programmers convert those thoughts, at the last possible moment, and at the lowest possible level, into

invisible “horizontal” synchronization operations on replicated media.

—————————————•• —————————————

